Meta-Classification using SVM Classifiers for Text Documents
نویسندگان
چکیده
Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated three approaches to build a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a metaclassifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers can significantly improve the accuracy of classification and that our meta-classification strategy gives better results than each individual classifier. For 7083 Reuters text documents we obtained a classification accuracies up to 92.04%. Keywords—Meta-classification, Learning with Kernels, Support Vector Machine, and Performance Evaluation.
منابع مشابه
Weights Space Exploration Using Genetic Algorithms for Meta-classifier in Text Document Classification
Automatic document classification has become an important task because of the continually increasing number of text documents with the users have to deal with. The aim of this paper is to develop a non-adaptive meta-classifier for text documents that has an increased classification accuracy. The developed meta-classifier is based on combining some SVM classifiers and a Naïve Bayes classifier. W...
متن کاملFISA: Feature-Based Instance Selection for Imbalanced Text Classification
Support Vector Machines (SVM) classifiers are widely used in text classification tasks and these tasks often involve imbalanced training. In this paper, we specifically address the cases where negative training documents significantly outnumber the positive ones. A generic algorithm known as FISA (Feature-based Instance Selection Algorithm), is proposed to select only a subset of negative train...
متن کاملArabic Text Classification Using Support Vector Machines
Text classification (TC) is the process of classifying documents into a predefined set of categories based on their content. Arabic language is highly inflectional and derivational language which makes text mining a complex task. In this paper we applied the Support Vector Machines (SVM) model in classifying Arabic text documents. The results compared with the other traditional classifiers Baye...
متن کاملComparative Assessment of the Performance of Three WEKA Text Classifiers Applied to Arabic Text
This research is conducted in order to compare the performance of three known text classification techniques namely, Support Vector Machine (SVM) classifier, Naïve Bayes (NB) classifier, and C4.5 Classifier. Text classification aims to automatically assign the text to a predefined category based on linguistic features, and content. These three techniques are compared using a set of Arabic text ...
متن کاملPerformance measurement framework for hierarchical text classification
Hierarchical text classification or simply hierarchical classification refers to assigning a document to one or more suitable categories from a hierarchical category space. In our literature survey, we have found that the existing hierarchical classification experiments used a variety of measures to evaluate performance. These performance measures often assume independence between categories an...
متن کامل